Convergence Analysis of Backpropagation Algorithm for Designing an Intelligent System for Sensing Manhole Gases
نویسندگان
چکیده
Human fatalities are reported due to the excessive proportional presence of hazardous gas components in manhole, such as Hydrogen Sulfide, Ammonia, Methane, Carbon Dioxide, Nitrogen Oxide, Carbon Monoxide, etc. Hence, predetermination of these gases is imperative. A neural network (NN) based intelligent sensory system is proposed for the avoidance of such fatalities. Backpropagation (BP) was applied for the supervised training of the neural network. A Gas sensor array consists of many sensor elements was employed for the sensing manhole gases. Sensors in the sensor array are responsible for sensing their target gas components only. Therefore, the presence of multiple gases results in cross sensitivity. The cross sensitivity is a crucial issue to this problem and it is viewed as pattern recognition and noise reduction problem. Various performance parameters and complexity of the problem influences NN training. In present chapter the performance of BP algorithm on such a real life application problem was comprehensively studied, compared and contrasted with the several other hybrid intelligent approaches both, in theoretical and in statistical sense.
منابع مشابه
Performance Analysis Of Neuro Genetic Algorithm Applied On Detecting Proportion Of Components In Manhole Gas Mixture
The article presents performance analysis of a real valued neuro genetic algorithm applied for the detection of proportion of the gases found in manhole gas mixture. The neural network (NN) trained using genetic algorithm (GA) leads to concept of neuro genetic algorithm, which is used for implementing an intelligent sensory system for the detection of component gases present in manhole gas mixt...
متن کاملPerformance analysis of neuro swarm optimization algorithm applied on detecting proportion of components in manhole gas mixture
The article presents performance analysis of the neuro swarm optimization algorithm applied for the detection of proportion of the component gases found in manhole gas mixture. The hybrid neuro swarm optimization technique is used for implementing an intelligent sensory system for the detection of component gases present in manhole gas mixture. The manhole gas mixture typically contains toxic g...
متن کاملDesigning an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملDesigning an intelligent system for predicting chromosomal genetic diseases using data mining
Background and Aim: Today we are witnessing tremendous advances in medical data mining. The data, by analyzing and discovering the relationships between them, can lead to algorithms that help us prevent or treat many diseases. Meanwhile, genetic diseases have attracted a large part of the attention of the medical world because the birth of children with genetic disorders imposes a great financi...
متن کاملA Neural Network-Based Intelligent Image Target Identification Method And Its Performance Analysis
The image sensor-based target identification is one of the important for vehicle identification and intelligent transportation applications. Based on neural network classification algorithms, one vehicle identification method is proposed. The main work includes: (1) designing the parameter extraction of vehicle shape based on Sobel operator and mathematical morphology; (2) introducing a vehicle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.01821 شماره
صفحات -
تاریخ انتشار 2017